SPECIFICATION MODEL LX285

1. OUTLINE

Model LX285 is an amplifier of 2-ports hybrid construction.

In input stage an operation amplifier of bipolar is used as the buffer.

Isolation withstand voltage between Input and Output is guaranteed continuous

2kv p-p at least.

Non-linearity is $\pm 0.05\%$ (Maximum) at full scale.

Gain is 1V/V fixed.

Dimension is $10(W) \times 50(L) \times 20(H)$ mm

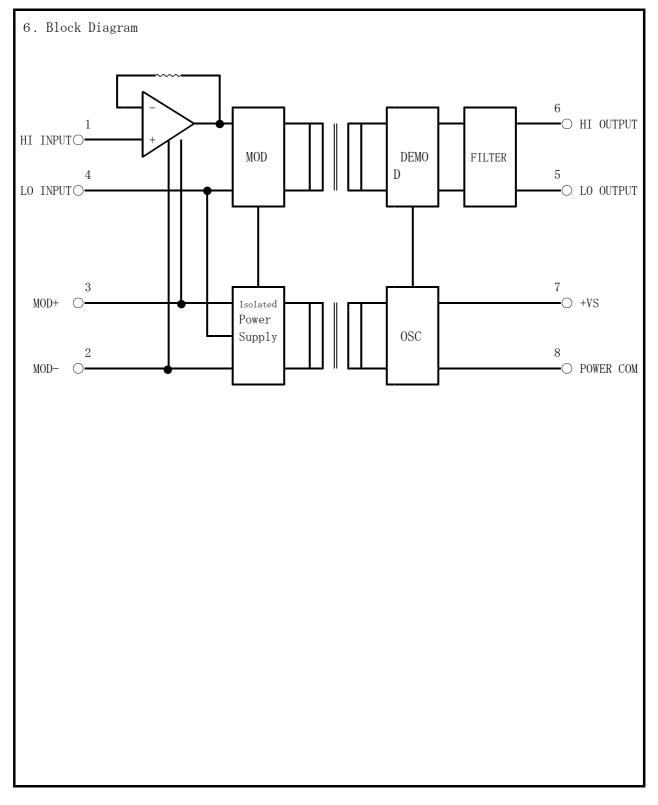
Construction is Epoxy Molded type.

2. FEATURE

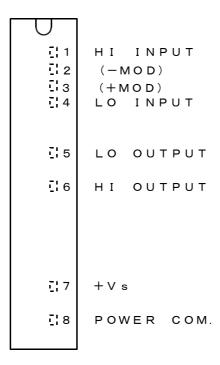
- Hybrid IC
- Fixed Gain 1 V/V
- 2-Ports Type
- Isolation with stand voltage is $2\;0\;0\;0\;V\;p\;k$ MIN
- Non-linearity is $\pm 0.05\%$ (Maximum)
- Dimension is $10(W) \times 50(L) \times 20(H)$ mm
- · Construction is Epoxy Molded type.

3. CONTENTS

- 4. Absolute Maximum Rating ----Page 2
- 5. Electronic Characteristics ----Page 2
- 6. Block Diagram ----- Page 3
- 7. Pin Assignment -----Page 4
- 8. Dimensions ----- Page 5
- 9. Instruction ----- Page $6\sim 8$


4. Absolute Maximum Rating

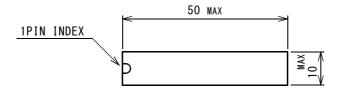
Power Supply Voltage	16.5V	Operating Temperature $0 ^{\circ}\mathrm{C} \sim 7 0 ^{\circ}\mathrm{C}$
Differential input Voltage	3 0 V	Storage Temperature $-2.5\mathrm{C}\!\sim\!8.5\mathrm{C}$
Common Mode Input Voltage	2000V pk MIN	Max Soldering Temperature $260\mathrm{C}$ ($10\mathrm{sec}$)

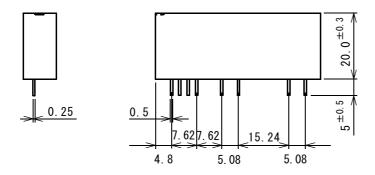

5. Electronic Characteristics (T a = 2 5 $^{\circ}$ C, V $^{+}$ = 1 5 V)

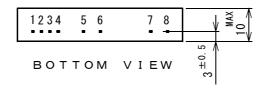
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Offset Voltage	VIS0	INITIAL		± 1 2	± 2 5	m V
Voltage Drift	$\triangle V$ iso/ $\triangle V^+$			±0.5	± 1	mV/%
Temperature Drift	$\triangle V$ iso $/\triangle T$	Ta=0°C∼70°C		200	3 5 0	μ V ∕°C
Input Bias Current	I B	INITIAL		8 0	5 0 0	n A
Temperature Drift	\triangle I B/ \triangle T	Ta=0°C∼70°C		± 1		n A∕℃
Input Impedance	ZIN		$3X10^{5}$	1 0 6		Ω
Linear Differential Input Voltage	VIDF		± 5			V
Max Differential Input Voltage	V DF	Continuous	3 0			Vrms
Max Common Mode Input Voltage		AC50Hz, 60Hz, 1min	2000			Vrms
	VCM	AC50Hz, 60Hz, Con.	2000			Vpk
		DC Continuous	2000			V
Common Mode Rejection Ratio	CMRR	110V, AC50Hz, 60Hz		100		d B
Non-Linearity	N L	フルスケール			± 0.2	%
Gain	G			1		V/V
Gain Error	GE				± 3	%
Gain、Temp.Drift	$\triangle G/\triangle T$	Ta=0°C ~ 7 0°C			± 0.03	%/°C
Max Output Voltage	V0		± 5			V
Output Impedance	Z 0			1		ΚΩ
Output Ripple V	VRI	20MHz Band Width		1 0	1 5	mVpp
Max Load Rest.	RL		5 0			ΚΩ
Small Signal Frequency Response	f s	at-3 d B (Remarks 1)	2	3		ΚΗz
Max Output Frequency	f c	(Remarks 2)	2	3		ΚΗz
Input Noise Voltage	VN	$f = 0.05 Hz \sim 100 Hz$			4 0	μ V p p
		$f = 10Hz\sim1kHz$			2 0	μVrms
Power Supply Voltage Range	V ⁺		13.5	1 5	16.5	V
No Load Current Consumption	I Q			2 5	3 0	m A

Remarks 1) Input Signal condition is $5~0\,m\,V\,p\,p$ $\,$ sin wave. Remarks 2) Input Signal Width is $\pm\,5\,V.$

7. PIN ASSIGNMENT




TOP VIEW


Remarks) Pin 2 and Pin 3 are connected internaly

Do not connect to a outer circuit.

8. Dimensions

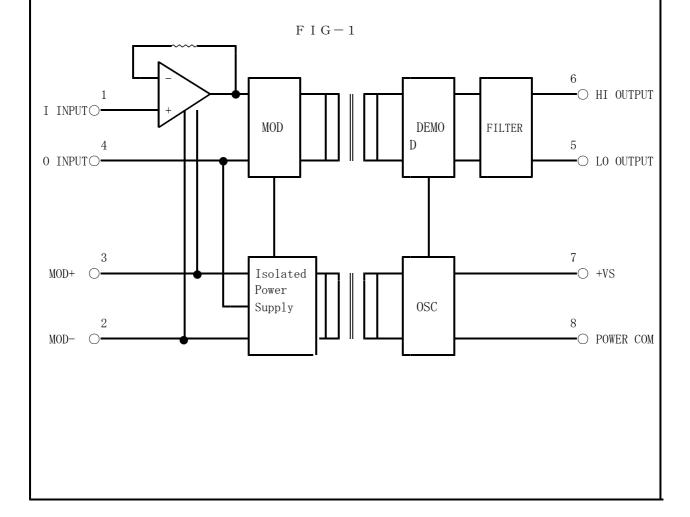
9. Instruction Manual

■ Operating Principles

The circuit construction of LX285 is shown in Fig-1.

The input stage is constructed with an operational amplifier and a rectifier circuit and a demodulator. The operational amplifier is used as a buffer one.

The output stage is constructed with a demodulator and a filter.

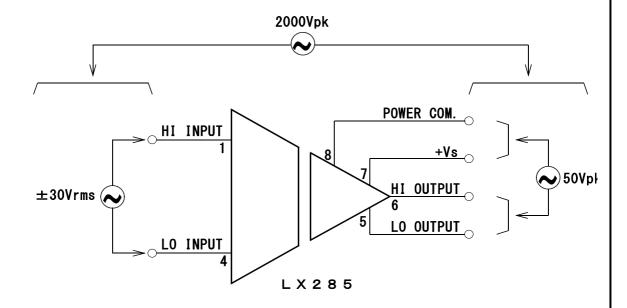

The power supply stage is constructed with a oscillator.

When power supplies between PIN 7 and PIN 8, the oscillator will operate.

Its signal is used for the demodulator and transferred to the input stage through the power transformer T2 for the modulator signal.

At the same time its signal is used for the power supply of the operational amplifier after rectifying in the rectifier circuit.

A input signal is modulated as amplitude wave in the demodulator through a buffer. The modulated signal is transferred to the output stage through a signal transformer T1, and is demodulated by the demodulator as an original signal. Finally this signal gets as the output through the filter.

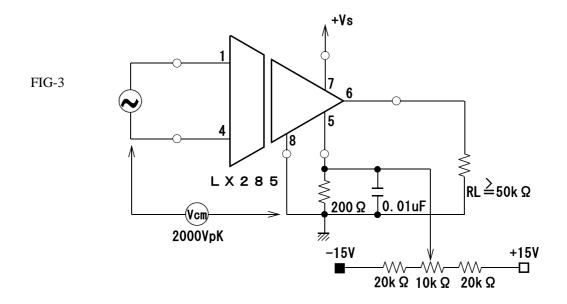

■ Withstanding Voltage between PINs

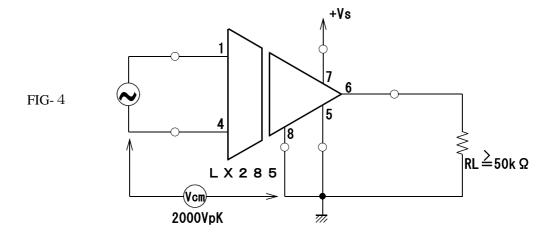
The rating of common mode Input Voltage (Vcm) is specified for a peak value of a pulse wave, a continuous AC and DC.

The rating of a continuous peak is applied from DC up to the frequency at the normal Output Power.

The rating of common mode Input Voltage (Vcm) is shown in Fig -2 for the each PIN in case of a continuous Input.

Fig-2




■ Adjustment of Offset

The adjustment of an offset voltage for this model can be done as for the connection Fig-3. with using a well regulated power supply of $\pm\,1\,5\,V$. 電源電圧が変動

This offset depends on the regulation of power supply.

In case of no need for the adjustment of an offset voltage PIN5 and PIN8 shall be connected as for Fig-4.

